Stéphane Gonzalez

Evaluation 3

Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$
x \mathcal{R} y \quad \Longleftrightarrow \quad \exists k \in \mathbb{Z}, x-y=2 k
$$

1. Prove that \mathcal{R} is an equivalence relation. (3pt)

- \mathcal{R} is symmetric: If $x \mathcal{R} y$ then there exists $k \in \mathbb{Z}$ such that $x-y=2 k$. Therefore $y-x=2 \times(-k)$. Since $k \in \mathbb{Z}$, we have $-k \in \mathbb{Z}$ therefore there exists a $k^{\prime}=-k \in \mathbb{Z}$ such that $y-x=2 k^{\prime}$. Hence $y \mathcal{R} x$.
- \mathcal{R} is reflexive: $\forall x \in \mathbb{Z}, x-x=0=2 \times 0$. Since $0 \in \mathbb{Z}$, we have $x \mathcal{R} x$.
- \mathcal{R} is transitive: If $x \mathcal{R} y$ then $\exists k \in \mathbb{Z}$ such that $x-y=2 k$; if $y \mathcal{R} z$ then $\exists k^{\prime} \in \mathbb{Z}$ such that $x-y=2 k^{\prime}$. Hence $(x-y)+(y-z)=x-z=$ $2 k+2 k^{\prime}=2\left(k+k^{\prime}\right)$. Since $k, k^{\prime} \in \mathbb{Z}$, we have $\tilde{k}=k+k^{\prime} \in \mathbb{Z}$. Therefore exists an integer \tilde{k} such that $x-z=2 \tilde{k}$. Which implies that $x \mathcal{R} z$.

Hence \mathcal{R} is an equivalence relation.
2. What are the elements of \mathbb{Z} / \mathcal{R} ? (3pt)

- $\mathbb{Z} / \mathcal{R}=\{\mathcal{R}(a), a \in \mathbb{Z}\}$, where $\mathcal{R}(a)=\{b \in \mathbb{Z}, b \mathcal{R} a\}$.
- $\mathcal{R}(0)=\{b \in \mathbb{Z}, b \mathcal{R} a\}=\{b \in \mathbb{Z}, \exists k \in \mathbb{Z}, b=2 k$.$\} which corresponds to$ the even numbers.
- $\mathcal{R}(1)=\{b \in \mathbb{Z}, b \mathcal{R} a\}=\{b \in \mathbb{Z}, \exists k \in \mathbb{Z}, b=2 k+1$.$\} which corresponds$ to the odd numbers.
- Since the union of even numbers and odd numbers is equal to \mathbb{Z} and since \mathbb{Z} / \mathcal{R} is a partition of \mathbb{Z}, we deduce that $\mathbb{Z} / \mathcal{R}=\{\mathcal{R}(0), \mathcal{R}(1)\}$.

3. Prove that $\mathcal{R}(0) \cap \mathcal{R}(1)=\emptyset$? (2pt) The quotient set of a set A is a partition of A, then the intersection of two elements of the quotient set is always \emptyset.
4. What $\operatorname{is} \inf \{\mathcal{R}(0), \mathcal{R}(1)\}$ and $\sup \{\mathcal{R}(0), \mathcal{R}(1)\}$ for the order relation \subseteq on $2^{\mathbb{Z}}$? (3pt)

- General statement: If E is a set and $A, B \in 2^{E}$, since $A \cap B \subseteq A$ and $A \cap B \subseteq B, A \cap B$ is a lower bound of $\{A, B\}$ for the order relation \subseteq. Let L be a lower bound of $\{A, B\}$ for the order relation \subseteq then $L \subseteq A$ and $L \subseteq B$ which implies $L \subseteq A \cap B$. Hence $A \cap B$ is the greatest lower bound, that is $\inf (\{A, B\})=A \cap B$. With this general statement we obtain $\inf \{\mathcal{R}(0), \mathcal{R}(1)\}=\mathcal{R}(0) \cap \mathcal{R}(1)=\emptyset$.
- General statement: If E is a set and $A, B \in 2^{E}$, since $A \subseteq A \cup B$ and $B \subseteq A \cup B, A \cup B$ is an upper bound of $\{A, B\}$ for the order relation \subseteq. Let L be an upper bound of $\{A, B\}$ for the order relation \subseteq then $A \subseteq L$ and $B \subseteq L$ which implies $A \cup B \subseteq L$. Hence $A \cup B$ is the least upper bound, that is $\sup (\{A, B\})=A \cup B$. With this general statement we obtain $\sup \{\mathcal{R}(0), \mathcal{R}(1)\}=\mathcal{R}(0) \cup \mathcal{R}(1)=\mathbb{Z}$.

5. Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$.
(a) Prove that f is never bijective. (2pt). Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$. Either $f(0)=\mathcal{R}(0)$ and since f is injective, $f(0) \neq f(1)$ implies $f(1)=\mathcal{R}(1)$ or $f(0)=\mathcal{R}(1)$ and since f is injective, $f(0) \neq f(1)$ implies $f(1)=$ $\mathcal{R}(0)$. Since f is injective, $f(2) \neq f(0)$ and $f(2) \neq f(1)$ Which is not possible beacause $f(2) \in\{\mathcal{R}(0), \mathcal{R}(1)\}=\{f(0), f(1)\}$. Hence f cannot be injective.
(b) Prove that if f is such that $\exists x, y \in \mathbb{Z}, f(x) \neq f(y)$ then f is surjective. (2pt) Either $f(x)=\mathcal{R}(0)$ and $f(x) \neq f(y)$ implies $f(y)=\mathcal{R}(1)$ or $f(x)=\mathcal{R}(1)$ and $f(x) \neq f(y)$ implies $f(y)=\mathcal{R}(0)$. In both case, $\mathbb{Z} / \mathcal{R}=f(\{x, y\}) \subseteq f(\mathbb{Z})$. Since we have always $f(\mathbb{Z}) \subseteq \mathbb{Z} / \mathcal{R}$ we deduce $f(\mathbb{Z})=\mathbb{Z} / \mathcal{R}$ Which implies the surjectivity of f.
(c) Find a function $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$ which is neither injective nor surjective. (2pt) Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$ defined by $\forall a \in \mathbb{Z}, f(a)=\mathcal{R}(1) . \quad f(\mathbb{Z})=$ $\{\mathcal{R}(1)\} \neq \mathbb{Z} / \mathcal{R}$, then f is not surjective. By question 5.a, f cannot be injective. Hence f is neither injective nor surjective.
