Stéphane Gonzalez

Evaluation 3

Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$x\mathcal{R}y \iff \exists k \in \mathbb{Z}, \ x - y = 2k.$$

- 1. Prove that \mathcal{R} is an equivalence relation. (3pt)
 - \mathcal{R} is symmetric: If $x\mathcal{R}y$ then there exists $k \in \mathbb{Z}$ such that x y = 2k. Therefore $y - x = 2 \times (-k)$. Since $k \in \mathbb{Z}$, we have $-k \in \mathbb{Z}$ therefore there exists a $k' = -k \in \mathbb{Z}$ such that y - x = 2k'. Hence $y\mathcal{R}x$.
 - \mathcal{R} is reflexive: $\forall x \in \mathbb{Z}, x x = 0 = 2 \times 0$. Since $0 \in \mathbb{Z}$, we have $x\mathcal{R}x$.
 - \mathcal{R} is transitive: If $x\mathcal{R}y$ then $\exists k \in \mathbb{Z}$ such that x y = 2k; if $y\mathcal{R}z$ then $\exists k' \in \mathbb{Z}$ such that x y = 2k'. Hence (x y) + (y z) = x z = 2k + 2k' = 2(k + k'). Since $k, k' \in \mathbb{Z}$, we have $\tilde{k} = k + k' \in \mathbb{Z}$. Therefore exists an integer \tilde{k} such that $x z = 2\tilde{k}$. Which implies that $x\mathcal{R}z$.

Hence \mathcal{R} is an equivalence relation.

- 2. What are the elements of \mathbb{Z}/\mathcal{R} ? (3pt)
 - $\mathbb{Z}/\mathcal{R} = \{\mathcal{R}(a), a \in \mathbb{Z}\}, \text{ where } \mathcal{R}(a) = \{b \in \mathbb{Z}, b\mathcal{R}a\}.$
 - $\mathcal{R}(0) = \{b \in \mathbb{Z}, b\mathcal{R}a\} = \{b \in \mathbb{Z}, \exists k \in \mathbb{Z}, b = 2k\}$ which corresponds to the even numbers.
 - $\mathcal{R}(1) = \{b \in \mathbb{Z}, b\mathcal{R}a\} = \{b \in \mathbb{Z}, \exists k \in \mathbb{Z}, b = 2k + 1.\}$ which corresponds to the odd numbers.
 - Since the union of even numbers and odd numbers is equal to \mathbb{Z} and since \mathbb{Z}/\mathcal{R} is a partition of \mathbb{Z} , we deduce that $\mathbb{Z}/\mathcal{R} = \{\mathcal{R}(0), \mathcal{R}(1)\}.$
- 3. Prove that $\mathcal{R}(0) \cap \mathcal{R}(1) = \emptyset$? (2pt) The quotient set of a set A is a partition of A, then the intersection of two elements of the quotient set is always \emptyset .

- 4. What is $\inf \{\mathcal{R}(0), \mathcal{R}(1)\}$ and $\sup \{\mathcal{R}(0), \mathcal{R}(1)\}$ for the order relation \subseteq on $2^{\mathbb{Z}}$? (3pt)
 - General statement: If E is a set and $A, B \in 2^E$, since $A \cap B \subseteq A$ and $A \cap B \subseteq B, A \cap B$ is a lower bound of $\{A, B\}$ for the order relation \subseteq . Let L be a lower bound of $\{A, B\}$ for the order relation \subseteq then $L \subseteq A$ and $L \subseteq B$ which implies $L \subseteq A \cap B$. Hence $A \cap B$ is the greatest lower bound, that is $\inf(\{A, B\}) = A \cap B$. With this general statement we obtain $\inf\{\mathcal{R}(0), \mathcal{R}(1)\} = \mathcal{R}(0) \cap \mathcal{R}(1) = \emptyset$.
 - General statement: If E is a set and $A, B \in 2^E$, since $A \subseteq A \cup B$ and $B \subseteq A \cup B, A \cup B$ is an upper bound of $\{A, B\}$ for the order relation \subseteq . Let L be an upper bound of $\{A, B\}$ for the order relation \subseteq then $A \subseteq L$ and $B \subseteq L$ which implies $A \cup B \subseteq L$. Hence $A \cup B$ is the least upper bound, that is $\sup(\{A, B\}) = A \cup B$. With this general statement we obtain $\sup\{\mathcal{R}(0), \mathcal{R}(1)\} = \mathcal{R}(0) \cup \mathcal{R}(1) = \mathbb{Z}$.
- 5. Let $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$.
 - (a) Prove that f is never bijective. (2pt). Let $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$. Either $f(0) = \mathcal{R}(0)$ and since f is injective, $f(0) \neq f(1)$ implies $f(1) = \mathcal{R}(1)$ or $f(0) = \mathcal{R}(1)$ and since f is injective, $f(0) \neq f(1)$ implies $f(1) = \mathcal{R}(0)$. Since f is injective, $f(2) \neq f(0)$ and $f(2) \neq f(1)$ Which is not possible beacause $f(2) \in \{\mathcal{R}(0), \mathcal{R}(1)\} = \{f(0), f(1)\}$. Hence f cannot be injective.
 - (b) Prove that if f is such that $\exists x, y \in \mathbb{Z}, f(x) \neq f(y)$ then f is surjective. (2pt) Either $f(x) = \mathcal{R}(0)$ and $f(x) \neq f(y)$ implies $f(y) = \mathcal{R}(1)$ or $f(x) = \mathcal{R}(1)$ and $f(x) \neq f(y)$ implies $f(y) = \mathcal{R}(0)$. In both case, $\mathbb{Z}/\mathcal{R} = f(\{x, y\}) \subseteq f(\mathbb{Z})$. Since we have always $f(\mathbb{Z}) \subseteq \mathbb{Z}/\mathcal{R}$ we deduce $f(\mathbb{Z}) = \mathbb{Z}/\mathcal{R}$ Which implies the surjectivity of f.
 - (c) Find a function $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$ which is neither injective nor surjective. (2pt) Let $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$ defined by $\forall a \in \mathbb{Z}, f(a) = \mathcal{R}(1)$. $f(\mathbb{Z}) = \{\mathcal{R}(1)\} \neq \mathbb{Z}/\mathcal{R}$, then f is not surjective. By question 5.a, f cannot be injective. Hence f is neither injective nor surjective.