University of Paris 1

Year 2014 - 2015

Stéphane Gonzalez

Evaluation 2

Grade: For each statement (+1 if your answer is correct, -2 if your answer is wrong, 0 otherwise.) For each of the following statements (1-11), say if it is TRUE or FALSE.

- 1. $(A \cap B) \cup (A \cap C) = A \cup (B \cap C).$
- 2. $A \subseteq B \Leftrightarrow A \in 2^B$.
- 3. $\emptyset \subseteq \emptyset$
- 4. $\{\emptyset\} \in \{\emptyset, \{a, b\}\}.$

Let $x \in \mathbb{N}$, (for example x=3).

- 5. $x \in \{\mathbb{N}, \mathbb{R}\}$
- 6. $\{x\} \in \{\mathbb{N}, \mathbb{R}\}$
- 7. $\{x\} \subseteq \{\mathbb{N}, \mathbb{R}\}$

Let X, Y, Z be three sets, $f: X \to Y, g: Y \to Z$.

- 8. If f is not injective then $g \circ f$ is not injective.
- 9. If g is surjective then $g \circ f$ is surjective.

Let E, F be two sets, $A \in 2^E$ and $f : E \to F$. Let $f_{|A} : A \to F$ defined by $f_{|A}(a) = f(a), \forall x \in A$.

- 10. f injective $\Rightarrow f_{|A|}$ injective.
- 11. f surjective $\Rightarrow f_{|A|}$ surjective.

Let $A \in 2^E$ and $B \in 2^F$. Rewrite each of the following statements, using mathematical symbols (except the symbol \neg). Of course, it is not allowed to write the same proposition in both sides of the equivalence...

12.
$$y \in f(A) \iff$$

- 13. $x \in f^{-1}(B) \iff$
- 14. f is not surjective \iff
- 15. f is not injective \iff