Stéphane Gonzalez

Evaluation 3

Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$
x \mathcal{R} y \quad \Longleftrightarrow \quad \exists k \in \mathbb{Z}, x-y=2 k
$$

1. Prove that \mathcal{R} is an equivalence relation. (3pt)
2. What are the elements of \mathbb{Z} / \mathcal{R} ? (3pt)
3. Prove that $\mathcal{R}(0) \cap \mathcal{R}(1)=\emptyset$? (2 pt)
4. What is $\inf \{\mathcal{R}(0), \mathcal{R}(1)\}$ and $\sup \{\mathcal{R}(0), \mathcal{R}(1)\}$ for the order relation \subseteq on $2^{\mathbb{Z}}$? (3pt)
5. Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$.
(a) Prove that f is never bijective. (2pt).
(b) Prove that if f is such that $\exists x, y \in \mathbb{Z}, f(x) \neq f(y)$ then f is surjective. (2pt)
(c) Find a function $f: \mathbb{Z} \rightarrow \mathbb{Z} / \mathcal{R}$ which is neither injective nor surjective. (2pt)
