Stéphane Gonzalez

Evaluation 3

Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$x\mathcal{R}y \iff \exists k \in \mathbb{Z}, \ x-y=2k.$$

- 1. Prove that \mathcal{R} is an equivalence relation. (3pt)
- 2. What are the elements of \mathbb{Z}/\mathcal{R} ? (3pt)
- 3. Prove that $\mathcal{R}(0) \cap \mathcal{R}(1) = \emptyset$? (2pt)
- 4. What is $\inf \{\mathcal{R}(0), \mathcal{R}(1)\}$ and $\sup \{\mathcal{R}(0), \mathcal{R}(1)\}$ for the order relation \subseteq on $2^{\mathbb{Z}}$? (3pt)
- 5. Let $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$.
 - (a) Prove that f is never bijective. (2pt).
 - (b) Prove that if f is such that $\exists x, y \in \mathbb{Z}, f(x) \neq f(y)$ then f is surjective. (2pt)
 - (c) Find a function $f : \mathbb{Z} \to \mathbb{Z}/\mathcal{R}$ which is neither injective nor surjective. (2pt)