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Lesson 1: Classical logic.

Definition 1. A proposition is a statement which is either true or false.

Example 1. • “Paris is in France” or “2+2=4” (are true).

• “2+2=5” (is false).

• “What time is it?” is not a proposition.

Logic is all about propositions and relationships between them.

Definition 2. Let p and q be two propositions:

(i) p ∧ q, called the conjunction of p and q, is the proposition which is true if and only if
p is true and q is true.

(ii) p ∨ q, called the disjunction of p and q, is the proposition which is true if p is true or q
is true.

(iii) ¬p, called the negation of p, is the proposition which is true if and only if p is false.

(iv) The material implication p → q, “if p then q”, is the abbreviation of the proposition
¬p ∨ q (which is true unless p is true and q is false).

(v) The material equivalence p ↔ q, “p if and only if q”, is the abbreviation of the propo-
sition (p → q) ∧ (q → p).

We can use a tabular to evaluate if a “complex” proposition is true or false. For example :

p q p ∧ q p ∨ q ¬p ¬q p → q q → p p ↔ q

T T T T F F T T T
T F F T F T F T F
F T F T T F T F F
F F F F T T T T T

Definition 3. The sentence “if p then q” or “p implies q” or “p is a sufficient condition for q”
or “q is a necessary condition for p” or “p only if q” is denoted by the abbreviation: “p ⇒ q”
which means:

“p → q” is true.

Example 2. Let p and q be the two following propositions:

• p: “1=2” (false)
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• q: “2=3” (false)

p → q is true (see truth table). Hence we can write p ⇒ q.

Definition 4. The sentence “p if and only if q” or “p is equivalent to q” or “p is a necessary
and sufficient condition for q” is denoted by the abbreviation: “p ⇔ q” which means:

“p ↔ q” is true.

Theorem 1. Let p and q be two propositions, we have the following equivalence:

(p → q) ⇔ (¬q → ¬p).

Proof. It suffices to prove that for all propositions p and q, the proposition (p → q) ↔ (¬q →
¬p) is true... use a truth table!!

p q p → q ¬q ¬p ¬q → ¬p (p → q) → (¬q → ¬p) (¬q → ¬p) → (p → q) (p → q) ↔ (¬q → ¬p)

T T T F F T T T T

T F F T F F T T T

F T T F T T T T T

F F T T T T T T T

The proposition (p → q) ↔ (¬q → ¬p) is always true, hence (p → q) ⇔ (¬q → ¬p).

Definition 5. Let p and q be two propositions, “¬q → ¬p” is called the contrapositive of
“p → q”.

By Theorem 1, a proposition is equivalent to its contrapositive.

Exercice : Find the contrapositive of the proposition

“If there is a problem then there is a solution”.

Solution :

“If there is no solution then there is no problem” (Shadock’s motto).

Compare the accuracy of the mathematical language and the accuracy of the usual language...

Definition 6. A tautology is a proposition which is always true regardless of which valuation
is used for the propositional variables.

Theorem 2. Let p, q and r be three propositions. The following propositions are tautologies:

(i) p ∨ (¬p)

(ii) p ↔ (¬(¬p))

(iii) (p ∨ q) ↔ (q ∨ p)
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(iv) (p ∧ q) ↔ (q ∧ p)

(v) ((p ∨ q) ∨ r) ↔ (p ∨ (q ∨ r))

(vi) ((p ∧ q) ∧ r) ↔ (p ∧ (q ∧ r))

(vii) (p ∧ (p → q)) → q

(viii) ¬(p ∨ q) ↔ (¬p ∧ ¬q)

(ix) ¬(p ∧ q) ↔ (¬p ∨ ¬q)

Note that:

• p ⇒ q means p → q is a tautology;

• q ⇔ q means p ↔ q is a tautology.

• By Theorem 1, the proposition (p → q) ↔ (¬q → ¬p) is a tautology.

Exercice : Find the negation of the proposition

“If there is a problem then there is a solution”.

Solution :

“There is a problem and there is not solution”

hint: use Theorem 2(iv) and (ii) to the propositions p:“there is a problem”, and q:“there is
a solution”.

Theorem 3. Let p, q and r be three propositions. The following propositions are tautologies:

(i) (p ∨ q) ∧ r) ↔ (p ∧ r) ∨ (q ∧ r)

(ii) (p ∧ q) ∨ r) ↔ (p ∨ r) ∧ (q ∨ r)

Definition 7 (Naive definition of a set). A set is a well-defined collection of objects. The
objects in a set are called its elements. If A is a set,

(i) a ∈ A means that that a belongs to the set A, or that a is an element of A, or that A
contains a.

(ii) a 6∈ A means that a does not belong to A or that a is not an element of A, or that A
does not contain a.

We can define a set in tabular form, listing all elements of the set.

Example 3. {α, β, γ} is the set which contains the elements called α, β and γ.

Definition 8. A predicate on a set A is an expression which associates to every element
x ∈ A a proposition p(x).
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Definition 9 (Universal Quantifier). Given the predicate p(x) on A, “∀x ∈ A, p(x)”, is the
proposition which is true if and only if p(x) is true for every element x ∈ A.

Example 4. Let p(α), p(β) and p(γ) three propositions which define a predicate on the set
{α, β, γ}. We have “∀x ∈ {α, β, γ}, p(x)” if and only if p(α) ∧ p(β) ∧ p(γ).

How to deal with the universal quantifier? In order to prove that a proposition of the
form “∀x ∈ A, p(x)” is true, you must consider an arbitrary element x ∈ A and prove that
p(x) is true. By arbitrary we mean that in the course of the proof, one must only use the
fact that x ∈ A.

Definition 10 (Existential Quantifier). Given the predicate p(x) on A, “∃x ∈ A, p(x)”, is
the proposition which is true if and only if p(a) is true for at least one element a ∈ A.

Example 5. Let p(α), p(β) and p(γ) three propositions which define a predicate on the set
{α, β, γ}. We have “∃x ∈ {α, β, γ}, p(x)” if and only if p(α) ∨ p(β) ∨ p(γ).

How to deal with the existential quantifier? In order to prove that a proposition of the
form “∃x ∈ A, p(x)” is true, it suffices to find one element a ∈ A such that p(a) is true.

Definition 11 (Negation of quantified statements). The negation of quantified statements
is based on the following rule:

(i) ¬(∀x ∈ A, p(x)) ⇔ (∃x ∈ A, ¬p(x))

(ii) ¬(∃x ∈ A, p(x)) ⇔ (∀x ∈ A, ¬p(x))

How to use this? Tells us that in order to prove a proposition of the form “∀x ∈ Ap(x)”
is false it suffices to find an element a ∈ A such that p(a) is false. Such an element is called
a counter-example.
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Lesson 2: Basic set theory.

All definitions are ultimately circular since they depend on concepts which must themselves
have definitions, a dependence which can not be continued indefinitely without returning to
the starting point. To avoid this vicious circle certain concepts must be taken as primitive
concepts; terms which are given no definition. Although the concept of set provides a basis
for all mathematics, we are not going to define the concept of set differently than the naive
way of Definition 7. The concept of set and set memberships are taken as a primitive.
However, even if both notions are not defined, we are going now to impose rules: what
things we can do and what things we can not with these two mathematical tools. These
required rules are called Axioms.

Definition 12. A set A is a subset of a set B if every element of A is an element of B; one
writes A ⊆ B. We also say that A is contained in B or that B contains A. Formally:

A ⊆ B ⇔ (∀x)(x ∈ B → x ∈ A).

Axiom 1 (Axiom of extensionality-Definition). Two sets A and B are equal, denoted A = B,
if A ⊆ B and B ⊆ A.

(∀A)(∀B)[(A = B) ⇔ ((A ⊆ B) ∧ (B ⊆ A))].

We denote by A 6= B the proposition ¬(A = B).

How to deal with this definition? In order to prove that two set A and B are equal, we need
to decompose the proof in two steps:

(i) Firstly prove A ⊆ B;

(ii) Secondly prove B ⊆ A.

Theorem 4. The following properties hold:

(i) All set contains itself.
∀A, A ⊆ A.

(ii) Two sets A and B are equal if they have exactly the same elements1. Formally:

(∀A)(∀B)[(A = B) ↔ [(∀x)(x ∈ A ↔ x ∈ B)]].

1Naive definition of the equality.
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(iii) If a set A is contained in a set B and if B is contained in a set C, then the set A is
contained in the set C. Formally:

(∀A)(∀B)(∀C)([(A ⊆ B) ∧ (B ⊆ C)] ⇒ (A ⊆ C)).

Proof. (i) The definition,
A ⊆ A ⇔ (∀x)(x ∈ A → x ∈ A)

is equivalent to:
¬(A ⊆ A) ⇔ (∃x)((x ∈ A) ∧ (x 6∈ A)).

The proposition (∃x)((x ∈ A) ∧ (x 6∈ A)) is false. However, if ¬(A ⊆ A) is true, then
the proposition (∃x)((x ∈ A) ∧ (x 6∈ A)) is true, a contradiction... We deduce that
¬(A ⊆ A) is false, and since

A ⊆ A ⇔ ¬¬(A ⊆ A),

we conclude that A ⊆ A is true.

(ii) The Definition 1 is equivalent to :

(∀A)(∀B)[(A = B) ↔ ((∀x)(x ∈ A → x ∈ B) ∧ (∀x)(x ∈ B → x ∈ A))].

which is equivalent to

(∀A)(∀B)[(A = B) ↔ (∀x)(x ∈ A ↔ x ∈ B)].

(iii) Suppose the proposition

(∀A)(∀B)(∀C)([(A ⊆ B) ∧ (B ⊆ C)] → (A ⊆ C)),

is false. Then the negation

(∃A)(∃B)(∃C)([(A ⊆ B) ∧ (B ⊆ C)] ∧ ¬(A ⊆ C)),

is true, and it is equivalent to:

(∃A)(∃B)(∃C)[(∀x)(x ∈ A → x ∈ B) ∧ (∀x)(x ∈ B → x ∈ C) ∧ (∃x)(x ∈ A ∧ x 6∈ C)],

which is equivalent to:

(∃A)(∃B)(∃C)[(∀x)(x 6∈ A ∨ x ∈ B) ∧ (∀x)(x 6∈ B ∨ x ∈ C) ∧ (∃x)(x ∈ A ∧ x 6∈ C)],

which implies:

(∃A)(∃B)(∃C)[(∃x)[(x 6∈ A ∨ x ∈ B) ∧ (x 6∈ B ∨ x ∈ C) ∧ (x ∈ A ∧ x 6∈ C)].

If the expression is true, (x ∈ A ∧ x 6∈ C) must be true. Then x 6∈ C and x ∈ A.
But in this case, (x 6∈ B ∨ x ∈ C) is true only if x 6∈ B and (x 6∈ A ∨ x ∈ B) is
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true only if x ∈ B... Then at least one of the propositions (∃x)[(x 6∈ A ∨ x ∈ B),
(∃x)[(x 6∈ B ∨ x ∈ C) and (∃x)[(x ∈ A ∧ x 6∈ C) is false. It follows that the proposition

(∃A)(∃B)(∃C)[(∃x)[(x 6∈ A ∨ x ∈ B) ∧ (x 6∈ B ∨ x ∈ C) ∧ (x ∈ A ∧ x 6∈ C)],

is false, which implies that

(∃A)(∃B)(∃C)[(∀x)(x 6∈ A ∨ x ∈ B) ∧ (∀x)(x 6∈ B ∨ x ∈ C) ∧ (∃x)(x ∈ A ∧ x 6∈ C)],

is false and we conclude that its negation

(∀A)(∀B)(∀C)([(A ⊆ B) ∧ (B ⊆ C)] → (A ⊆ C)),

is true.

We would like to characterize the elements of a set by a property.

Axiom 2 (Axiom of specification). Let A be a set and P a predicate on A. There exists
a set denoted {x ∈ A, P (x)} such that the elements of {x ∈ A, P (x)} are the elements of
x ∈ A such that P (x) is true. Formally:

(∀A)(∃{x ∈ A, P (x)})(∀x)[(x ∈ {x ∈ A, P (x)}) ⇔ ((x ∈ A) ∧ P (x))].

Example 6. Let X be the set of animals. P (x) : “the animal x has feathers”. The set
{x ∈ X, P (x)} is the set of animals with feathers.

Theorem 5. The set of all sets does not exist.

Proof. We suppose that the set A of all sets exists. We define the predicate P on A by:

P (x) : x 6∈ x.

Let B the set defined with the axiom of specification by:

B = {x ∈ A, P (x)}.

If B ∈ B then P (B) is true which implies B 6∈ B ; but if B 6∈ B then P (B) is true which
implies B ∈ B... We have simultaneously B 6∈ B and B ∈ B, a contradiction. Hence the set
of all sets does not exist.

Theorem 6. There exists a set having no elements. This set called emptyset and denoted
∅ is unique.

Proof. Let X be a set, and P the predicate on X defined by: P (x): “x 6= x”. Using the
Axiom of specification we define the set ∅ by:

∅ = {x ∈ X, P (x)}.

Suppose there exists x ∈ ∅, then P (x) is true, but it is not possible according to the Axiom 1.
Suppose there exists a set o without element such that o 6= ∅, then

(∃x)[((x ∈ o) ∧ (x 6∈ ∅)) ∨ ((x ∈ ∅) ∧ (x 6∈ o))],

that is not possible. Hence o = ∅, which proves the unicity.
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Theorem 7. If X is a set, then ∅ ⊆ X.

Proof. Let X be a set, suppose ¬(∅ ⊆ X) is true. The proposition ¬(∅ ⊆ X) is equivalent to
¬((∀y)(y ∈ ∅) → (y ∈ X)), which is equivalent to ((∃y)((y ∈ ∅) ∧ (y 6∈ X))). the proposition
(∃y)(y ∈ ∅) is always false, then ((∃y)((y ∈ ∅) ∧ (y 6∈ X))) is false and we deduce that
¬(∅ ⊆ X) is false. Hence ∅ ⊆ X is true.

Axiom 3 (Axiom of pairing). Given two sets A and B there exists a set denoted {A, B}
and called the pair of A and B whose members are exactly the two given sets. Formally:

(∀A)(∀B)(∃{A, B})(∀x)[x ∈ {A, B} ⇔ ((x = A) ∨ (x = B))]

Definition 13. The pair {A, A} is abbreviated {A} and called the singleton containing A.

We should be vigilant in order to ensure that there was no confusion between a set A and
the singleton {A}. The proposition A ∈ {A} is always true. If A = ∅, the set ∅ does not
contain element while the set {∅} contains exactly one element: the element ∅ !

Similarly, do not make confusion between for example the set {{1}, {2, 3}} and {1, 2, 3}: the
first set contains two elements while the second contains three elements...

Note that If X is a set, the following is always true: x is an element of X if and only if the
singleton {x} is contained in X:

x ∈ X ⇔ {x} ⊆ X.

Axiom 4 (Axiom of union). If A is a collection of sets, we can define a set
⋃

C∈A
C composed

exactly with all the elements of the sets C, C ∈ A. Formally:

(∀A)(∃
⋃

C∈A

C)(∀x)[(x ∈
⋃

C∈A

C) ⇔ (∃C)((C ∈ A) ∧ (x ∈ C))]

In order to prove that x ∈
⋃

C∈A
C, we must prove that x is an element of at least one of the

sets which belong to A:
x ∈

⋃

C∈A

C ↔ (∃C ∈ A, x ∈ C).

Definition 14. Given two sets X and Y , we denote by X
⋃

Y and we call union of X and
Y the set defined by:

(x ∈ X
⋃

Y ) ↔ ((x ∈ X) ∨ (x ∈ Y ))
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Note that if we put A = {X, Y }, the previous definition becomes equivalent to:

(x ∈ X
⋃

Y ) ↔ (∃C)((C ∈ A) ∧ (x ∈ C)).

(C ∈ A) means C = X or C = Y

Hence the Axiom of union ensures the existence of X
⋃

Y =
⋃

C∈{X,Y }

C and allow us to define

the union of a collection A of sets, larger than a simple pair {X, Y }.

Theorem 8. The union
⋃

satisfies the following properties:

(i) A
⋃

∅ = A;

(ii) A
⋃

B = B
⋃

A;

(iii) (A
⋃

B)
⋃

C = A
⋃

(B
⋃

C).

Proof. (i), (ii), can be proved as exercice. (iii) comes from the tautology:

[(x ∈ A) ∨ (x ∈ B)] ∨ (x ∈ C) ⇔ (x ∈ A) ∨ [(x ∈ B) ∨ (x ∈ C)]

Example 7. Do not make confusion between elements of a set and the set itself:

•
{α, β} ∪ {β, γ} =

⋃

C∈{{α,β},{β,γ}}

C = {α, β, γ}

• ⋃

C∈∅

C = ∅

• ⋃

C∈{∅,{∅},{∅,{∅}}}

C = (∅ ∪ {∅}) ∪ ({∅, {∅}}}) = {∅, {∅}}

Theorem 9. Let A be a nonempty collection of sets2. There exists a unique set denoted⋂
C∈A

C such that each element of
⋂

C∈A
C is an element of each set which belongs to A.

(∀A 6= ∅)(∃
⋂

C∈A

C)(∀x)[(x ∈
⋂

C∈A

C) ↔ ((∀C)(C ∈ A) → (x ∈ C))]

Proof. A is nonempty, let C ∈ A be an element (set) of A. We put:

B := {x ∈ C, (∀Z ∈ A)(x ∈ Z)}

The Axiom 2 ensures that B is a set, while Axiom 1 ensures its uniqueness. We observe that
the set B satisfies the properties required for

⋂
C∈A

C.

2A set which contains at least one set
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Definition 15. Given two sets X and Y , we denote by X
⋂

Y and we call union of X and
Y the set defined by:

(x ∈ X
⋂

Y ) ↔ ((x ∈ X) ∧ (x ∈ Y ))

Note that if we put A = {X, Y }, the previous definition becomes equivalent to:

(x ∈
⋂

C∈A

C) ↔ ((∀C)(C ∈ A) → (x ∈ C))].

(C ∈ A) means C = X or C = Y

Hence the Theorem 9 ensures the existence of X
⋂

Y =
⋂

C∈{X,Y }

C and allow us to define the

intersection of a collection A of sets, larger than a simple pair {X, Y }.

Venn diagrams of the intersection:

X

Y
X ∩ Y

Theorem 10. The intersection
⋂

satisfies the following properties:

(i) A
⋂

∅ = ∅;

(ii) A
⋂

B = B
⋂

A;

(iii) (A
⋂

B)
⋂

C = A
⋂

(B
⋂

C).

(iv) A
⋂

(B
⋃

C) = (A
⋂

B)
⋃

(A
⋂

C)

(v) A
⋃

(B
⋂

C) = (A
⋃

B)
⋂

(A
⋃

C)

Proof. (i), (ii) and (iii) can be found as exercice. (iv) and (v) are direct consequence of
Theorem 3

Theorem 11. Let A and B be two sets, there exists unique a set denoted A \ B and called
the relative complement of B in A whose elements are the elements of A which does not
belong to B.

(∀A)(∀B)[(x ∈ A \ B) ⇔ (x ∈ A) ∧ (x 6∈ B)].
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Proof. Use Axiom 2 for the existence and Axiom 1 for the uniqueness.

Theorem 12 (Morgan’s laws). Let A, B and C be three sets:

(i) A \ ∅ = A

(ii) ∅ \ A = ∅

(iii) C \ (A ∪ B) = (C \ A) ∩ (C \ B)

(iv) C \ (A ∩ B) = (C \ A) ∪ (C \ B)

Proof. As exercice.
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C \ B

C

B

A

C \ A

C

B

A

C \ (A ∪ B)

=

(C \ A) ∩ (C \ B)

C

B

A
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Definition 16. Let A and B be two sets. The symetric difference of A and B is the set:

A∆B := (A
⋃

B) \ (A
⋂

B)

Theorem 13. The symetric difference ∆ satisfies the following properties:

(i) A∆∅ = A;

(ii) A∆B = B∆A;

(iii) (A∆B)∆C = A∆(B∆C).

(iv) A∆A = ∅
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Lesson 3: Mappings, inverse image: definition and basic properties.

Axiom 5 (axiom of power set). Given any set A, there is a set denoted 2A (or P(A)) and
called power set of A such that, given any set B, B is a member of 2A if and only if every
element of B is also an element of A. Formally:

(∀A)(∃2A)(∀x)(x ∈ 2A ⇔ x ⊆ A)

If A is a set, the set 2A is unique (consequence of Axiom 1).

Example 8.

• 2∅ = {∅}.

• 2{a} = {∅, {a}}.

• 2{a,b} = {∅, {a}, {b}, {a, b}}

• 2{a,b,c} = {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}}

• ...

Definition 17. • Naive definition of an ordered pair: An ordered pair (x, y), or simply
a pair, is a list of two objects x and y given in a definite order; x is said to be the first
(or left ) coordinate of the pair while y is the second (or right) coordinate.

• Kuratowski’s definition: An ordered pair (x, y) is the set which contains the singleton
{x}, and the pair {x, y}:

(x, y) = {{x}, {x, y}}.

Theorem 14.

(a, b) = (c, d) ⇔ ((a = b) ∧ (c = d).

Proof.

• ” ⇒ ” If a = c and b = d, then {{a}, {a, b}} = {{c}, {c, d}}. Thus (a, b) = (c, d).

• ” ⇐ ”: Two cases:
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(i) If a = b:
(a, b) = {{a}, {a, b}} = {{a}, {a, a}} = {{a}}.

(c, d) = {{c}, {c, d}} = {{a}}.

Thus {c} = {c, d} = {a}, which implies a = c and a = d. By hypothesis, a = b.
Hence b = d.

(ii) If a 6= b, then (a, b) = (c, d) implies

{{a}, {a, b}} = {{c}, {c, d}}.

– Suppose {c, d} = {a}. Then c = d = a, and so

{{c}, {c, d}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}.

But then {{a}, {a, b}} would also equal {{a}}, so that b = a which contradicts
a 6= b.

– Suppose {c} = {a, b}. Then a = b = c, which also contradicts a 6= b.
Therefore {c} = {a}, so that c = a and {c, d} = {a, b}.
If d = a were true, then {c, d} = {a, a} = {a} 6= {a, b}, a contradiction. Thus
d = b is the case, so that a = c and b = d.

Definition 18. The Cartesian product of two sets A and B, denoted by A × B, is the set
of all ordered pairs (a, b) where a ∈ A and b ∈ B, that is:

A × B = {x ∈ 22A∪B

, (∃a ∈ A)(∃b ∈ B), x = (a, b)}.

• If A = B we simply denote A × A by A2.

• The Cartesian product of three sets A, B and C, denoted A×B×C, is the abbreviation
of the set (A × B) × C. The elements of A × B × C are called the ordered triplets of
A, B and C.

Proposition 1. (i) A × B = ∅ is equivalent to (A = ∅ ∨ B = ∅).

(ii) If A 6= ∅ and B 6= ∅ then

(a) A × B ⊆ A′ × B′ is equivalent to (A ⊆ A′ ∧ B ⊆ B′).

(b) (A × B) ∪ (A′ × B) = (A ∪ A) × B.

(c) (A × B) ∩ (A′ × B) = (A ∩ A) × B.

Proof. (i) ¬(A = ∅ ∨ B = ∅) ⇔ (A 6= ∅ ∧ B 6= ∅) ⇔ ((∃a ∈ A) ∧ (∃b ∈ B) ⇔ (∃x ∈
22A∪B

, (∃a ∈ A)(∃b ∈ B), x = {{a}, {a, b}} = (a, b)) ⇔ A × B 6= ∅ ⇔ ¬(A × B = ∅)

(ii) Let A 6= ∅ and B 6= ∅:

16



(a) ”⇒”: Suppose A×B ⊆ A′×B′. Let a ∈ A and b ∈ B. By hypothesis (a, b) ∈ A×B
implies (a, b) ∈ A′ × B′ which implies by definition of the cartesian product that:
(a ∈ A′) ∧ (b ∈ B′).

”⇐”: Suppose (A ⊆ A′) ∧ (B ⊆ B′). Let x ∈ A × B, then (∃a ∈ A) ∧ (∃b ∈ B)
such that x = (a, b), but (A ⊆ A′) ∧ (B ⊆ B′) implies (a ∈ A′) ∧ (b ∈ B′). Hence
x = (a, b) ∈ A′ × B′.

Definition 19. • A mapping from the set A to the set B, denoted f : A → B, is a
triplet (A, B, graph(f)) where A and B are two sets and graph(f) is a subset of A × B
such that for every a ∈ A, there is one and only one b ∈ B such that (a, b) ∈ graph(f):

[∀x ∈ A, ∃y ∈ B, (x, y) ∈ graph(f)] ∧ [((a, b) ∈ graph(f)∧(a, c) ∈ graph(f)) ⇒ (b = c)].

In other words, for every a ∈ A there is exactly one element denoted f(a) ∈ B such
that the ordered pair (a, f(a)) ∈ graph(f).

– The set A is called the domain of f ;

– The set B is called the codomain of f ;

– The set graph(f) is called the graph of f ;

– The unique element f(a) such that (a, f(a)) ∈ graph(f) is called the image of a
by f ;

– If C ⊆ A, the set f(C) := {b ∈ B, ∃a ∈ C, (a, b) ∈ graph(f)} = {b ∈ B, ∃a ∈
C, b = f(a)} is called the image of C by f .

– The set f(A) := {b ∈ B, (a, b) ∈ graph(f)} = {b ∈ B, ∃a ∈ A, b = f(a)} 3 is called
the image of f .

• We denote by BA (or F(A, B)) the set of functions from A to B.

Observe that:
graph(f) = {(a, b) ∈ A × B, b = f(a)}.

Note that

• C = ∅ is equivalent to f(C) = ∅.

• If f : A → B, f({x}) = {f(x)} for every x ∈ A.

Definition 20. Two mappings f and g from A to B are said to be equal if for every element
a ∈ A one has f(a) = g(a).

3Observe that f(A) ⊆ B
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Example 9. Here are some examples of mappings:

• The identity mapping on A denoted idA is the mapping from A to A defined by idA(a) =
a for every a ∈ A.

• A mapping f : A → B is said to be constant if for every x and y in A, one has

f(x) = f(y).

In other words, there exist an element b ∈ B such that for every a ∈ A, f(a) = b.

• The mapping proj1 : A × B → A (resp. proj2 : A × B → B) which associates to the
pair (a, b) the element a (resp. b) is called the canonical projection of A×B on A (resp.
B).

• Let C ⊆ A, the restriction of the mapping f : A → B to C is the mapping f|C : C → B
defined by f|C(x) := f(x) for every x ∈ C.

Proposition 2. Let f : A → B and let A1 , A2 be two subsets of A:

(i) A1 ⊆ A2 implies f(A1) ⊆ f(A2)

(ii) f(A1 ∪ A2) = f(A1) ∪ f(A2)

(iii) f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2).

Note that the above inclusion may not be an equality. Find a counter-example.

Definition 21. The inverse image of C ⊆ B by f : A → B is the set

f−1(C) = {a ∈ A, f(a) ∈ C}

Proposition 3. Let f : A → B and let B1, B2 be two subsets of B one has:

(i) f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2)

(ii) f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2).

18



Lesson 4: Injection, Surjection, Bijection.

Definition 22. A mapping f : A → B is said to be surjective (or onto) if every point in B
is the image of a point in A, that is if B = f(A).

Definition 23. A mapping f : A → B is said to be injective (or one- to-one) if two
distinct elements of A have different images by f . That is, if a1 6= a2 then f(a1) 6= f(a2) or
equivalently4, if f(a1) = f(a2) then a1 = a2.

Avoid the confusion between the definition of injectivity and the fact that every mappping
as the property that a1 = a2 implies that f(a1) = f(a2), which simply means that every
element has a unique image.

Definition 24. A mapping f : A → B is said to be bijective if it is both surjective and
injective.

Definition 25. let f : A → B and g : C → D. The composition of f by g is the mapping
g ◦ f : A → D defined by

g ◦ f(a) = g(f(a)), ∀a ∈ A.

Definition 26. The inverse of a mapping f : A → B is a mapping g : B → A satisfying:
g ◦f = idA and f ◦g = idB. A mapping f : A → B is said to be invertible if it has an inverse
mapping.

Proposition 4. The two following propositions are true:

(i) If f : A → B is injective, then f−1(f(A′)) = A′ for every A′ ⊆ A.

(ii) If f : A → B is surjective, then f(f−1(B′)) = B′ for every B′ ⊆ B.

Hence, in particular, if f : A → B is injective then f−1(f(a)) = {a} for every a ∈ A.; and if
f : A → B is onto then f(f−1({b})) = b for every b ∈ B

Proposition 5. The following propositions is true:

(f : E → F injective) ⇐⇒ (∀A ⊆ E)(∀B ⊆ E)(f(A ∩ B) = f(A) ∩ f(B)).

4By using the contrapositive!!
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Proof. • ” ⇒ ” the inclusion ⊆ is always true. We show the inclusion ⊇: Let y ∈
f(A) ∩ f(B), we have in particular y ∈ f(A) and y ∈ f(B), hence there exist x1 ∈ A
and x2 ∈ B such that f(x1) = f(x2) = y. Since f is injective and f(x1) = f(x2), we
obtain x1 = x2 =: x. x1 ∈ A ⇒ x ∈ A, x2 ∈ B ⇒ x ∈ B. Hence there exists x ∈ A ∩ B
such that f(x) = y. We conclude that y ∈ f(A ∩ B).

• ” ⇐ ” Let x 6= y. we have immediatly

f({x} ∩ {y}) = f({x}) ∩ f({y}) = ∅,

Which implies f(x) 6= f(y).

Proposition 6. Let f : A → B and g : B → C.

• f and g injective ⇒ g ◦ f injective

• f and g surjective ⇒ g ◦ f surjective

• g ◦ f injective ⇒ f injective

• g ◦ f surjective ⇒ g surjective

Proof. As exercice.

Proposition 7. A mapping f : A → B is bijective if and only if it is invertible.

Proof. • ”⇒”: Since f is bijective, f is in particular surjective which implies ∀b ∈ B, ∃a ∈
A such that f(a) = b and since f is injective if there exists a′ ∈ A such that f(a′) = b,
we have a = a′. Hence ∀b ∈ B, there exists a unique a such that f(a) = b. Let
g : B → A the mapping which associates to each element b ∈ B the unique element
a ∈ A such that f(a) = b. We have immediatly:

∀b ∈ B, f ◦ g(b) = f(g(b)) = f(a) = b;

and

∀a ∈ A, g ◦ f(a) = g(f(a)) = g(b) = a.

Hence g is a well defined mapping which proves that f is invertible.

• ”⇐”: Let g : B → A be a mapping which satisfies f ◦ g = idB and g ◦ f = idA. idA is
bijective therefore it is injective. By Proposition 6, g ◦ f injective implies f injective.
Furthermore idB is bijective therefore it is surjective. By Proposition 6, f ◦ g surjective
implies f surjective. We conclude that f is bijective.

Proposition 8. Let f : A → B bijective: the inverse mapping of f is unique.
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Proof. Let g1 : B → A and g2 : B → A such that g1 ◦ f = idA and f ◦ g1 = idB and
g2 ◦ f = idA and f ◦ g2 = idB. Since g1 ◦ f = g2 ◦ f we have

(g1 ◦ f) ◦ g1 = (g2 ◦ f) ◦ g1.

Hence
g1 ◦ (f ◦ g1) = g2 ◦ (f ◦ g1),

which implies
g1 ◦ (idB) = g2 ◦ (idB).

Hence g1 = g2.

If f is bijective5, we denote by f−1 the unique inverse mapping of f .

Note that notation f−1 may have two different meanings, whether we consider f−1(C) the
inverse image of a set C and f−1(y) the image of y ∈ B by the inverse mapping f−1 : B → A.
In the latter case, the mapping f needs to be bijective to have an inverse, whereas no such
assumption is made to talk about the inverse image of a set.

5Then it is invertible
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Lesson 5: Relations.

Definition 27. • A binary relation R on a set A is a subset of the Cartesian product
A2 = A × A. More generally, a binary relation between two sets A and B is a subset
of A × B.

• Let R be a relation between A and B. The proposition (x, y) ∈ R is denoted by the
abbreviation: xRy.

Example 10.

Let E be a set. The diagonal =E (or ∆(E)) of E is the subset of E2 defined by

=E:= {(x, x) ∈ E2, x ∈ E}6.

=E can be see as a relation, and if (x, y) ∈=E then we have x =E y or more commonly
x = y.

If f : A 7→ B, then graph(f) is a relation between A and B.

If X is the set of human being, xRy if and only if x is the friend of y define a relation on X.

One can represent a relation as a graph. For example : the relation R on {A, B, C, D, E}
defined by

R := {(A, A), (E, E), (A, B), (B, A), (A, E), (B, C), (D, C), (E, B), (E, D)},

can be representing by

A

B

C D

E

and vice versa.

Definition 28. A relation R on E × E is said to be:

6Since (x, x) = {{x}}, we can define (x, x) without the definition of the equality between two elements.
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• reflexive if:
∀x ∈ E, xRx

Example:

A

B

C

• transitive if:
∀(x, y, z) ∈ E3, (xRy) ∧ (yRz) ⇒ (xRz)

Example:

A B

C

D

• symmetric if:
∀(x, y, z) ∈ E3, xRy ⇔ yRx.

Example:

A

B

C
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• anti-symmetric if
∀(x, y, z) ∈ E3, xRy ∧ yRx ⇒ x = y.

Example: Let X be a set, one can see ⊆ as an anti-symetric relation on 2X .

• total (or complete) if
∀(x, y) ∈ E2, xRy ∨ yRx is true.

Example:

A

B

C

Definition 29. An equivalence relation on E is a relation on E × E which is reflexive,
symmetric, and transitive.

Example 11. Here are some standard examples of equivalence relations:

• The equality relation =E.

• The equality between subsets of E, that is the equality =2E .

• Given a set E, the relation in 2E × 2E defined by ”there exists a bijective mapping
f : A 7→ B.”

•

A

B

C D

E
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Definition 30. Let R be an equivalence relation on E and x ∈ E, the equivalence class of
x for R is the subset of E:

R(x) = {y ∈ E|xRy}

Definition 31. We say that π ⊆ 2E is a partition of a set E if it satisfies:

(i) Two distinct elements of π are disjoint, that is:

((P ∈ π, Q ∈ π) ∧ (P 6= Q)) ⇒ (P ∩ Q = ∅).

(ii) Every element x of E belongs to some P ∈ π, that is

⋃

P ∈π

P = E

Theorem 15. Let E be a set, the two following propositions are equivalent:

(i) π is a partition of E.

(ii) There exists an equivalence relation R on E such that π = {R(x), x ∈ E}.

Where R(x) is the equivalence class of x for R.

Proof.

Definition 32. Let R be an equivalence relation on E, the quotient set of E by R is the
set E/R of equivalence classes7 of R, that is the set:

E/R := {R(x), x ∈ E} ⊆ 2E.

Lemma 1. If R is a relation on a set E, then the mapping s : E → E/R which associates
to each x ∈ E the equivalence class R(x), is a surjection.

Lemma 2. Let E and F be two sets, and f : E → F a mapping from E to F . The relation
R defined by

xRy ⇔ f(x) = f(y),

is an equivalence relation. Furthermore, the following propositions hold:

(i) The mapping b : E/R → f(E) which associates to each R(x) ∈ E/R the unique
element f(x) of the singleton f(R(x)), is a bijection.

(ii) The mapping i : f(E) → F which associates to each y ∈ f(E) the element y ∈ F , is
an injection.

Theorem 16. Every mapping f : E → F is the composition of an injection, a bijection and
a surjection:

f = i ◦ b ◦ s

Where i, b and s are the injection, bijection and surjection defined

7It is a partition of E.
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Definition 33. • An order relation on E is a relation reflexive, transitive and antisym-
metric;

• A total (or complete) preorder relation on E is a relation reflexive, transitive and total.

Example 12. If E is a set, ⊆ is an order relation on 2E but not a total preorder.

Definition 34. A preorder relation on E is a relation reflexive and transitive. A set together
with a preorder relation is called a preordered set.

Hence:

• An equivalence relation is a preorder relation which is symmetric;

• An order relation is a preorder relation which is antisymmetric

• A total preorder is a preorder relation which is total.

=E is the unique preorder on E which is an order relation and an equivalence relation.

Definition 35. Let ⋐ be an order relation on E, and X a subset of E

• m ∈ E is a lower bound of X for ⋐ if for every element x ∈ X one has m ⋐ x. When
X has a lower bound, it is said to be bounded below.

• M ∈ E is an upper bound of X for ⋐ if for every element x ∈ X one has x ⋐ M . When
X has an upper bound, it is said to be bounded above.

Definition 36. Let ⋐ be a order relation on E, and X a subset of E.

• m ∈ E is a minimum of X for ⋐ if:

(i) ∀x ∈ X one has m ⋐ x (m is a lower bound of X)

(ii) m ∈ X.

• M ∈ E is a maximum of X for ⋐ if:

(i) ∀x ∈ X one has x ⋐ M (M is a upper bound of X)

(ii) M ∈ X.

Proposition 9. Let ⋐ be an order relation on E, and X a subset of E. When it exists, the
minimum (resp. the maximum) is unique.

Proof. As exercice

Let ⋐ be a total order relation on E, and X a subset of E. When it exists, we denote
min(X) or minx∈X x (resp. max(X) or maxx∈X x) the minimum (resp. the maximum) of X.
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Example 13. Let E be a set, for the order relation ⊆ on 2E we have:

min(2E) = ∅, and max(2E) = E.

Definition 37. Let ⋐ be an order relation on E and X a subset of E. Then m ∈ X is a
minimal element of X if for all x ∈ X, x ⋐ m implies m = x.

Definition 38. Let ⋐ be an order relation on E and X a subset of E. Then M ∈ X is a
maximal element of X if for all x ∈ X, M ⋐ x implies M = x.

Example 14. Let E be a set, for the order relation ⊆ on 2E \ {∅} the minimal elements are
the singletons while the maximal element is E.

Definition 39. Let E be a set and A a subset of E. We put:

m(A) := {α ∈ E, α lower bound of E},

M(A) := {α ∈ E, α upper bound of E}.

(i) If max(m(A)) exists, this maximum is called the infimum or the greatest lower bound
of A and it is denoted inf(A) or infx∈A x.

(ii) If min(M(A)) exists, this minimum is called the supremum or the least upper bound
of A and it is denoted sup(A) or supx∈A x.

a = inf(A) ⇐⇒ [(∀x ∈ A, a ⋐ x) ∧ (∀α, [∀x ∈ A, α ⋐ x] ⇒ α ⋐ a)].

b = sup(A) ⇐⇒ [(∀x ∈ A, x ⋐ b) ∧ (∀β, [∀x ∈ A, x ⋐ β] ⇒ b ⋐ β)].

Example 15. Let E be a set. We consider the order relation ⊆ on 2E. Let A and B be two
subsets of E. We have:

inf({A, B}) = A ∩ B

inf({A, B}) = A ∪ B

Proposition 10. Let ⋐ be an order relation on E and X a subset of E.

min(X) exists
⇒
:

inf(X) exists
⇒
:

X has a lower bound.

max(X) exists
⇒
:

sup(X) exists
⇒
:

X has an upper bound.

Theorem 17. Let A be a family of sets. Let B the set defined by:

B :=
⋃

A∈A

A

The two following propositions hold:

(i) sup(B) exists if and only if ∀A ∈ A, sup(A) exists.

(ii) If sup(B) exists, we have:

sup(B) = sup({sup(A), A ∈ A}).
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Lesson 6: N, Z, Q, R

Definition 40. A binary operation on a set S is a function + : S × S → S

If + is a binary operation on S and (a, b) ∈ S × S we denote a + b the element +(a, b).

Example 16. If E is a set, ∪ or ∩ are binary operation on 2E.

Definition 41. • A group (G, +) is a set G together with a binary operation + (called
the group law of G) wich satisfies:

(i) If a ∈ G, b ∈ G, c ∈ G then (a + b) + c = a + (b + c); (associativity)

(ii) There exists 0 ∈ G, such that ∀a ∈ G, 0 + a = a + 0 = a; (existence of the identity
element)

(iii) ∀a ∈ G, ∃ − a ∈ G such that a + (−a) = (−a) + a = 0, where 0 is the identity
element; (existence of inverse).

• (H, +) is a subgroup of (G, +) if 6= H ⊆ G and ∀a, b ∈ H, a − b ∈ H . Equivalently,
(H, +) is a subgroup of (G, +) if ∅ 6= H ⊆ G and (H, +|H×H) is a group.

It is easy to prove that an identity element, that is an element which satisfies ∀a ∈ G,
0 + a = a + 0 = a is always unique. Similarly if an operation is associative and if −a is such
that a + (−a) = (−a) + a = 0 then −a is unique.

Definition 42. A group (G, +) is said to be abelian if furthermore

a + b = b + a (Commutativity).

Example 17. • {0, 1} together with the commutative binary operation + defined by
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

• If E is a set, the set 2E together with the symetric difference ∆ is a group.

Definition 43. • A ring (A, +, ·) is a set A equipped with binary operations + and · the
eight following properties:

1. ∀a, b, c ∈ A,
(a + b) + c = a + (b + c). (+ is associative).
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2. There is an element denoted 0 in A such that

a + 0 = a and 0 + a = a. (0 is the additive identity)

3. For each a in A there exists an element denoted −a in A such that

a + (−a) = (−a) + a = 0 (−a is the additive inverse of a).

4. ∀a, b ∈ A,
a + b = b + a (+ is commutative).

5. ∀a, b, c ∈ A,
(a · b) · c = a · (b · c) (· is associative).

6. There is an element denoted 1 in A such that

a · 1 = a and 1 · a = a (1 is the multiplicative identity).

7. ∀a, b, c ∈ A,

a · (b + c) = (a · b) + (a · c) (left distributivity).

8. ∀a, b, c ∈ A,

(b + c) · a = (b · a) + (c · a) (right distributivity).

• (B, +, ·) is a subring of (A, +, ·) if ∅ 6= B ⊆ A and (B, +|B×B, ·|B×B) is a ring.

1,2,3,4 means (A, +) is an abelian group under addition, 5,6 means (for culture) (A, ·) is a
monoid under multiplication, while 7,8 means multiplication distributes over addition.

Example 18. • ({0, 1}, +, ×) with + defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0
and × defined by 0 × 0 = 0, 0 × 1 = 1 × 0 = 0, 1 × 1 = 1

• If E is a set then (2E , ∆, ∩) is a ring.

Lemma 3. Let (A, +, ×) be a ring and A ⊆ 2A such that ∀B ∈ A, (B, +, ×) is a subring of
(A, +, ×). Then

(
⋂

B∈A

B, +, ×) is a subring of (A, +, ×).

Proof. Let x, y ∈
⋂

B∈A B and B′ ∈ A. We have x, y ∈ B′ and since B′ is a subring of
(A, +, ×), we have x × y ∈ B′. Since B′ is a subgroup of (A, +) we have x − y ∈ B. Hence
∀B ∈ A, x × y ∈ B and x − y ∈ B which implies x × y ∈

⋂
B∈A B. Furthermore ∀B ∈ A, we

have 1 ∈ B which implies 1 ∈
⋂

B∈A B.
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Definition 44. • A field (K, +, ×) is a ring which contains at least the two distinct
elements 0 (additive identity) and 1 (multiplicative identity), and such that:

∀x ∈ K\{0}, there exists an element denoted x−1 ∈ K such that x×x−1 = x−1×x = 1

• A commutative field is a field (K, +, ×) such that ∀x, y ∈ K, x × y = y × x.

• (K, +, ·) is a subfield of (K, +, ·) if {0, 1} ⊆ K ⊆ K and (K, +|K×K, ·|K×K) is a field.

Equivalently a commutative field can be defined as a ring such that (K \ {0}, ×) forms an
abelian group.

Lemma 4. Let (K, +, ×) be a field and K ⊆ 2K such that ∀K ∈ K, (K, +, ×) is a subfield
of (K, +, ×). Then

(
⋂

K∈K

K, +, ×) is a subfield of (K, +, ×)

Proof. By Lemma 3,
⋂

K∈K K is a ring. Let x ∈
⋂

K∈K K, we have ∀K ∈ K, x ∈ K. Since
∀K ∈ K, K is a field, it follows that ∀K ∈ K, x−1 ∈ K which implies x−1 ∈

⋂
K∈K K.

Definition 45. Let X be a set and ⋐ an order relation on X. We say that X has the
least-upper-bound property for ⋐ if ∀A ∈ 2X \ {∅}, if A has an upper bound for ⋐ then
sup(A) exists for ⋐ and sup(A) ∈ X.

Axiom 6. There exists a set denoted R such that:

(i) There exists two binary operations + and × such that (R, +, ×) is a commutative field.

(ii) There exists a total order relation denoted ≤ such that :

(a) ∀x, y, z ∈ R, x ≤ y ⇒ x + z ≤ y + z.

(b) ∀x, y ∈ R, (0 ≤ x ∧ 0 ≤ y) ⇒ 0 ≤ x × y.

(c) R has the least-upper-bound property for ≤.

In the following the symbol + refers to the additive law of (R, +, ×) and × refers the
multiplicative law of (R, +, ×). Furthermore 0 (resp 1) refers to the additive identity (resp
the multiplicative identity) of the field (R, +, ×). The symbol ≤ will refer to the total order
relation given in Axiom 6. The symbol x < y means x ≤ y and x 6= y.

If x, y ∈ R and y 6= 0 we denote 1

y
the real number y−1, and x

y
the real number x × y−1.

If x ∈ R, we denote x2 the real number x × x.

Proposition 11. The following propositions are true :

(i) If x ∈ R and 0 ≤ x then −x ≤ 0

(ii) 0 < 1
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(iii) If x ∈ R and 0 ≤ x then 0 ≤ x−1.

Proof. (i) Let x ∈ R by definition of R, if 0 ≤ x then 0 − x ≤ x − x that is −x ≤ 0.

(ii) Observe that if x × (−1) = 1 then −x = 1 which implies x = −1. Suppose that 1 < 0
hence −1 > 0 which implies by definition of R that (−1) × (−1) > 0 but it is not
possible because (−1) × (−1) = 1 < 0. Absurd. Then 0 ≤ 1. Since 0 and 1 are distinct,
we have 0 < 1.

(iii) Suppose x−1 < 0 then 0 < −x−1 which implies by the definition of R that 0 < −x−1×x =
−1, which is not possible given that 0 < 1

Definition 46. Let K ⊆ 2R the set of subsets K ⊆ R such that ∀K ∈ K, (K, +, ×) is a
subfield of (R, +, ×). We define the set of rational number denoted Q as the set

Q :=
⋂

K∈K

K.

Definition 47. Let A ⊆ 2Q the set of subsets A ⊆ Q such that ∀A ∈ A, (A, +, ×) is a
subring of the ring8 (Q, +, ×). We define the set of integers denoted Z as the set

Z :=
⋂

A∈A

A.

Definition 48. We define the set of natural numbers denoted N as the set

N := {z ∈ Z, 0 ≤ z}.

observe that 0 ∈ N, 1 ∈ N, 1 + 1 = 2 ∈ N...

Theorem 18.

Q = {
p

q
, p ∈ Z, q ∈ N \ {0}}.

Proof. • For proving Q ⊆ {p
q
, p ∈ Z, q ∈ N \ {0}}, it suffices to prove that

({
p

q
, p ∈ Z, q ∈ N \ {0}}, +, ×)

is a field contained in R because in this case

Q =
⋂

K∈K

K ⊆ {
p

q
, p ∈ Z, q ∈ N \ {0}}.

• Let x ∈ {p
q
, p ∈ Z, q ∈ N\{0}}, there exists p ∈ Z, and q ∈ N\0 such that x = p

q
. p ∈ Z

and Z ⊆ Q implies p ∈ Q; q ∈ N \ {0} and N \ {0} ⊆ Q \ {0} implies q ∈ Q \ {0}. Since
Q is a field, q−1 = 1

q
∈ Q and p × q−1 = p

q
∈ Q. Hence {p

q
, p ∈ Z, q ∈ N \ {0}} ⊆ Q.

8Since (Q, +, ×) is a field, it is in particular a ring.
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Lesson 7: Properties of N and mathematical induction.

Theorem 19. The set N satisfies the following properties:

(i) ∀A ⊆ N, if 0 ∈ A and ∀n ∈ A, n + 1 ∈ A then A = N

(ii) ∀n ∈ N \ {0} there exists p ∈ N such that n = p + 1

(iii) ∀n ∈ N there is no element m ∈ N such that n < m < n + 1. (in particular, there is no
element between 0 and 1)

(iv) If n ∈ N and m ∈ N then n + m ∈ N.

(v) If n ∈ N and m ∈ N then n × m ∈ N.

Proof. Let P = {P ⊆ N : (0 ∈ P ) ∧ (∀x ∈ P, x + 1 ∈ P )} and N0 =
⋂

P ∈P P .

• First, we prove that N0 ∈ P. Let n ∈ N0. ∀P ∈ P, we have n ∈ P but n ∈ P ⇒ n+1 ∈ P .
Therefore ∀P ∈ P we have n + 1 ∈ P . Hence n + 1 ∈ N0.

• Let A ⊆ N0 such that A ∈ P. First A ⊆ N0. Now if n ∈ N0 then ∀P ∈ P, n ∈ P . Since
A ∈ P, we have n ∈ A. It follows A = N0.

• Now we prove that ∀n ∈ N0 \ {0} there exists p ∈ N0 such that n = p + 1. Let

A = {0} ∪ {n ∈ N0, ∃p ∈ N0 such that n = p + 1}.

By definition of A, we have 0 ∈ A. It is clear that 0 ∈ N0 and 1 ∈ N0. Since 1 = 0 + 1,
we see that 1 ∈ {n ∈ N0, ∃p ∈ N0 such that n = p + 1}, which implies A \ {0} 6= ∅.
Let n ∈ A \ {0} then there exists p ∈ N0 such that n = p + 1. Since n, p ∈ N0, we
have n + 1 ∈ N0 and p + 1 ∈ N0. Hence n + 1 = (p + 1) + 1 belongs to A. Hence
(0 ∈ A) ∧ (∀x ∈ A, x + 1 ∈ A). Therefore A ∈ P and frim the previous point, since
A ⊆ N0 we obtain A = N0.

• We want to prove that there is no element of N0 between 0 and 1: Suppose there exists
m ∈ N0 such that 0 < m < 1. Since m 6= 0, ∃p ∈ N0 such that m = p + 1. Hence
p ∈ N0 ⊆ N and p < 0 which is not possible by definition of N.

• Let n ∈ N0 and An = {p ∈ N0, (n − p) ∈ N0 ∨ (n − p) ∈ {−k, k ∈ N0}}. It is clear that
0 ∈ An because n ∈ N0. Let p ∈ An.

– If (n − p) ∈ N0 then

∗ either n − p = 0 ⇒ n − (p + 1) = −1 ∈ {−k, k ∈ N0}

∗ or n − p 6= 0 and there exists q ∈ N0 such that n − p = q + 1 which implies
n − p − 1 = n − (p + 1) = q ∈ N0.

– If n − p ∈ {−k, k ∈ N0}, let r ∈ N0 such that −(n − p) = r. r ∈ N0 implies
r + 1 ∈ N0. Hence n − (p + 1) = n − p − 1 = −r − 1 = −(r + 1) ∈ {−k, k ∈ N0}.

Hence : 0 ∈ An and ∀p ∈ An, p + 1 ∈ An. Hence An = N0.
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• By the two previous points, if there exists n, m ∈ N0 such that n < m < n + 1 then
0 < m − n < 1 and since m − n ∈ N0 we found an element of N0 between 0 and 1.
Absurd.

• Let n ∈ N0 and Bn = {m ∈ N0 such that n + m ∈ N0}. First 0 ∈ Bn because n =
n+0 ∈ N0. Suppose m ∈ Bn then (n+m ∈ N0) implies n+(m+1) = (n+m)+1 ∈ N0.
And we conclude that Bn = N0.

• Let n ∈ N0 and Cn = {m ∈ N0 such that n × m ∈ N0}. First 0 ∈ Cn because
0 × n = 0 ∈ N0. Suppose m ∈ Cn then n × (m + 1) = n × m + n ∈ N0 because
m ∈ Cn ⇒ n × m ∈ N0 and the previous point implis that the sum of two elements of
N0 belongs to N0.

• Let Z0 = N0 ∪ {−n, n ∈ N0}. We want to prove that Z0 = Z. Clearly Z0 ⊆ Z. Let
p, q ∈ Z0. we have 0 ∈ Z0, 1 ∈ Z0, p − q ∈ Z0, and p × q ∈ Z0. It is sufficient to
prove that Z0 is a subring of (Q, +, ×) which is contained in Z defined as the infimum
of the set of subrings of (Q, +, ×). Hence Z0 = Z. Therefore the positive part N0 of Z0

corresponds to N. And we conclude that N0 = N.

Theorem 20 (Weak principle of induction). Let p(n) be a predicate on N. Suppose the two
following propositions hold

(i) p(0) is true

(ii) ∀ n ∈ N, p(n) ⇒ p(n + 1).

Then ∀n ∈ N, p(n) is true.

Proof. Let p(n) be a predicate on N such that p(0) is true and ∀ n ∈ N, p(n) ⇒ p(n + 1).
Let

A = {n ∈ N, p(n) is true}.

By assumption 0 ∈ A and if n ∈ A then n + 1 ∈ A. Therefore by Theorem 19(i), A = N.
Which implies that ∀n ∈ N, p(n) is true.

Corollary 1. Let p(n) be a predicate on N. Let k ∈ N Suppose the two following propositions
hold

(i) p(k) is true

(ii) ∀n ∈ N, n ≥ k, p(n) ⇒ p(n + 1).

Then ∀n ∈ N, suchthatn≥ k, we have p(n) is true.

Example 19. Prove that n2 ≥ 3n for n ≥ 3.

Warning:

(i) Be careful not to overlook the basis! Example: p(n) : ”n > n”
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(ii) If the basis is P (n0), then do not forget to check that p(n) ⇒ p(n + 1) for all n ≥ n0.
Example : Find the mistake in the next proof: All humans have the same gender. So
consider a room with n people. For n=1 the statement is obviously true. Now the
inductive step: If there are n+1 people in the room we ask one arbitrary person to leave
the room. So now only n people are left in the room. By the induction hypothesis all
these people have the same gender. The person outside now comes back and another
person has to leave the room. So again there are n people in the room and all having
the same gender. Hence the n+1 people all have the same gender.

Theorem 21 (Strong principle of induction). ∀n[(∀m < n, p(m)) ⇒ p(n)] then ∀n, p(n).

Proof. The Strong principle of induction follows from the weak principle of induction. As-
sume that ∀n[(∀m < n, p(m)) ⇒ p(n)] holds. We show by weak induction that ∀n, p(n).
We define on N the predicate Q(n) :′ ∀m < n, p(m)′. Our induction hypothesis becomes
∀n[Q(n) ⇒ p(n)]. We prove by weak induction that ∀n, Q(n). The proposition Q(0) is true
because there does not exists natural integer m such that m < 0. Suppose Q(n) is true, we
shall show Q(n + 1). We assumed ∀n[Q(n) ⇒ p(n)] therefore Q(n) true implies p(n) true.
Hence we have proved ∀m ≤ n, p(m) holds. Or by Theorem 19(iii), p(m) holds ∀m < n + 1,
ie, Q(n + 1) is true. This complete the proof that ∀n, Q(n).

Theorem 22 (The Least Number Principle, infinite descent of Fermat). The LNP principle
states: If M ⊆ N and M 6= ∅, then M has a minimum.

Proof. The Least Number Principle follows from the strong principle of induction. Let p(n)
be the predicate defined on N by p(n) :′ n 6∈ M ′. Suppose ∀m < n, p(m) holds. This means
∀m < n, m 6∈ M . Hence m < n ⇒ m 6∈ M . The contrapositive gives m ∈ M ⇒ ¬(m < n).
But ≤ is complete, then ∀x, y ∈ N, (x < y ∨ x = y ∨ y < x) is true. Therefore, m < n false
implies n ≥ m true. It follows ∀m ∈ M, n ≥ m. Therefore n 6∈ M otherwise it would be the
minimum of M , a contradiction. Hence p(n) holds.

Note that a nonempty subset of N does not have always a maximum. Think for example
to the odd numbers. However...

Theorem 23. If A is a nonempty subset of N with an upper bound, then max(A) exists.

Proof. Since A is a nonempty subset of N ⊆ R with an upper bound, we have with the
definition of R, sup(A) ∈ R. By definition of sup, there exists a ∈ A such that sup(A) − 1 <
a ≤ sup(A). Hence sup(A) < a + 1. By Theorem 19(iii) there is no integer between a and
a + 1

The following proposes a second proof of the Theorem 20 by using the Least Number
Principle: Hence it is possible to prove the strong induction principle from the weak induction
principle, the Least Number Principle from the strong induction principle and the weak
induction principle from the Least Number Principle: all three principles are equivalent9.

9Usefull when the weak induction principle is an axiom.
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A second proof of Theorem 20. Let p be a property such that p(0) holds and ∀n[p(n) ⇒
p(n + 1)]. We must prove ∀n, p(n). This amount to showing that the set M := {n ∈
N, p(n) does not hold} is empty. By the LNP principle, it is enough to show that M has
no minimum. Suppose M has a minimum, say m. Since p(0) holds, 0 6∈ M , hence m 6= 0.
Therefore by Theorem 19(ii), there exists n ∈ N such that m = n + 1, hence n < m. the
element m is the minimum of M and n < m means n 6∈ M , which means that p(n) holds.
From our assumption, we have then p(n + 1) holds, ie, p(m) holds, which means m 6∈ M , a
contradiction.
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Lesson 8: liminf and limsup.

Let A be a set and ≦ an order relation on A. We suppose that A satisfies the following
property:

∀B ⊆ A, inf(B) ∈ A and sup(B) ∈ A.10

Example 20. In the following we consider the two following examples of set together with
an order relation which satisfies the previous property:

• [−∞, +∞] together with ≤.

• If X is a set, 2X together with ⊆.

Definition 49. A sequence of elements of A (or simply a sequence in A) is a mapping
a : N → A which associates to every integer n ∈ N an element an ∈ A (the notation an

instead of a(n) is standard). The sequence is usually denoted by (an)n∈N, or simply by (an)n

or (an). The set of sequences in A is denoted AN, that is, the set of mappings from N to A.

Example 21. • (an) ∈ [−∞, +∞]N defined by a0 = +∞ and an = 1

n
∈ R for n ≥ 1.

• A sequence of subsets of A is a mapping from N to 2A which associates to every integer
n ∈ N a set An ⊆ A. It is usually denoted by (An)n∈N, or simply by (An)n or (An).

– (An) ∈ (2R)N defined by An = {[1 − n, 1 + n]} for n ∈ N.

Do not make the confusion between a sequence in A, which is a mapping from N to A and
the set of values of the sequences, which is the image of N by this mapping, that is the set
{an, n ∈ N} ⊆ A}. For example, consider the real-valued sequence (an) ⊆ R defined by
an = (−1)n. Then its set of values is {an|n ∈ N} = {−1, +1}.

Definition 50. A sequence (an)n∈N ∈ AN is said to be:

• increasing if an < an+1 for every n ∈ N,

• decreasing if an > an+1 for every n ∈ N,

• nondecreasing if an ≦ an+1 for every n ∈ N,

• nonincreasing if an ≧ an+1 for every n ∈ N,

• monotonic or monotone if it is either nondecreasing or nonincreasing.

Definition 51. Let a = (an)n∈N be a sequence in A, a subsequence of (an)n∈N is a sequence
b = (ank)k∈N where φ = (nk)k∈N is an increasing sequence of integers. A subsequence of
a = (an)n∈N can be equivalently defined as the sequence a ◦ φ for any increasing sequence φ
of integers.

10A set which satisfies this property is called a complete lattice.
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Let a = (ann∈N be a sequence in A, examples of subsequences of (an) are given by the sub-
sequences of its even terms and odd terms, defined respectively by (a2k)k∈N and (a2k+1)k∈N.

Definition 52. A family of elements of A indexed by a set I is a mapping from I to A. It
associates to every element i ∈ I an element ai ∈ A and is usually denoted by (ai)i∈I , or
simply (ai)i or (ai). A family of subsets of A indexed by a set I associates to every element
i ∈ I a subset Ai of A. It is denoted by (Ai)i∈I , or simply (Ai)i or (Ai). A finite family of
elements (resp. subsets) of A is a family indexed by a finite set I.

Definition 53. Let us consider a family of sets (Ai)i∈I of A:

(i) The union of the Ai denoted by ∪i∈IAi is the set defined by

∪i∈IAi = {x ∈ A, ∃i ∈ I, x ∈ Ai}.

(ii) The intersection of the Ai denoted by ∩i∈IAi is the set defined by

∩i∈IAi = {x ∈ A, ∀i ∈ I, x ∈ Ai}.

Proposition 12. ∀(an)n∈N ∈ AN, supn∈N infk≥n ak ∈ A and infn∈N supk≥n ak ∈ A.

Proof. Let (an)n∈N ∈ AN. We prove supn∈N infk≥n ak ∈ A 11. Let n ∈ N. We put An =
{ak, k ≥ n}. Forall k ≥ n, ak ∈ A therefore An ⊆ A. By assumption on A,

inf(An) = inf
k≥n

ak ∈ A.

For each n ∈ N, we put bn = inf(An). For any n ∈ N, bn is an element of A therefore the set

B = {bn, n ∈ N} ⊆ A.

Now by assumption on A, we obtain

sup(B) = sup
n∈N

bn = sup
n∈N

inf
k≥n

an ∈ A.

Definition 54. The superior limit of a sequence (an)n∈N is the element lim supn an of A
defined by

lim sup
n

an = inf
n∈N

sup
k≥n

ak.

The inferior limit of a sequence (an)n∈N is the element lim infn an of A defined by

lim inf
n

an = sup
n∈N

inf
k≥n

ak.

11It is similar to prove that infn∈N sup
k≥n

ak ∈ A
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Example 22. • Let (an) ∈ [−∞, +∞]N defined by an = (−1)n ∀n ∈ N. We have:

lim sup
n

an = 1 and lim inf
n

an = −1.

Proposition 13. Let X be a set. We consider 2X together with ⊆. Let (An)n∈N ∈ (2X)N:

lim sup
n

An =
⋂

n∈N

⋃

k≥n

Ak and lim inf
n

An =
⋃

n∈N

⋂

k≥n

Ak.

Proof. Let n ∈ N. We put An = {Ak, k ≥ n}. It is not difficult to prove that for the order
relation ⊆,

inf(An) =
⋂

Ak∈An

Ak =
⋂

k≥n

Ak.

For each n ∈ N, we put
Bn =

⋂

k≥n

Ak.

For any n ∈ N, Bn is an element of 2X therefore the set

B = {Bn, n ∈ N} ⊆ 2X .

It is not difficult to prove that

sup(B) =
⋃

Bk∈B

Bk =
⋃

n∈N

⋂

k≥n

Ak.

Hence
lim inf

n
An = sup

n∈N

inf
k≥n

Ak =
⋃

n∈N

⋂

k≥n

Ak.

The proof is similar for lim sup...

Example 23. Let (An) ∈ (2R)N defined by An = {(−1)n} ∀n ∈ N. We have:

lim sup
n

an = {−1, 1} and lim inf
n

An = ∅.

The superior limit of a sequence (An)n∈N of subsets of a set X can be seen as the set of
elements in X that belong to infinitely many An.

x ∈ lim sup
n

An ⇔ x ∈
⋂

n∈N

⋃

k≥n

Ak ⇔ ∀n ∈ N, ∃k ≥ n, x ∈ Ak.

The inferior limit of a sequence (An)n∈N of subsets of a set X can be seen as the set of
elements in X that belong all An from a certain n.

x ∈ lim inf
n

An ⇔ x ∈
⋃

n∈N

⋂

k≥n

Ak ⇔ ∃n ∈ N, ∀k ≥ n, x ∈ Ak.

38



Definition 55. If lim supn an = lim infn an we use the notation limn an. This element is
called the limit of (an)n∈N.

Lemma 5. Let (an)n∈N ∈ AN. The sequence (bn)n∈N defined by bn = infk≥n ak is nonde-
creasing and the sequence cn = supk≥n ak is nonincreasing.

Proof. Let n be an element of N. For all k ≥ n + 1, we have bn ≦ ak which implies that bn

is a lower bound of {ak, k ≥ n}. Since bn+1 is the greatest lower bound of {ak, k ≥ n}, we
have immediatly bn ≦ bn+1. Hence bn is nondecreasing. The proof is similar for (cn)n∈N.

Proposition 14. Let (an)n∈N ∈ AN.

lim inf
n

an ≦ lim sup
n

an.

Proof. ∀n ∈ N, infk≥n ak ≦ an and an ≦ supk≥n ak. By transitivity of we have

∀n ∈ N, inf
k≥n

ak ≦ sup
k≥n

ak.

We put bn = infk≥nak and cn = supk≥n ak. Hence for any n ∈ N, we have bn ≦ cn. By
definition supn bn ∈ A satisfies bn ≦ supn bn for all n and ∀M ∈ A such that bn ≦ M for all
n, we have supn bn ≦ M . Let n ∈ N. We want to prove that ∀r ∈ N, bn ≦ cr. If n = r we
have seen bn ≦ cn. Since (bn) is nondecreasing and (cn) nonincreasing,

• If n < r, we have
bn ≦ br ≦ cr ≦ cn

• if r < n, we have
br ≦ bn ≦ cn ≦ cr

In all cases, bn ≦ cr. Hence ∀r ∈ N, bn ≦ cr. Therefore bn ≦ infr∈N cr. Since n is arbitrary,
we have

∀n ∈ N, bn ≦ inf
r∈N

cr.

Therefore infr∈N cr is an upper bound of {bn, n ∈ N} which implies that

sup(bn) ≦ inf
r∈N

cr.

This last expression is equivalent to

lim inf
n

an ≦ lim sup
n

an.

Theorem 24. If (an)n∈N is nondecreasing then limnan exists and we have:

lim
n

an = sup
n∈N

an.

If (an)n∈N is nonincreasing then limnan exists and we have:

lim
n

an = inf
n∈N

an.
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Proof. Let (an)n∈N be a nondecreasing sequence in A. For all n ∈ N,

inf
k≥n

ak = an

Hence
lim inf

n
an = sup

n
inf
k≥n

ak = sup
n∈N

an ≧ inf
n∈N

sup
k≥n

ak = lim sup
n

an.

Therefore lim supn an ≦ lim infn an. Since we always have lim infn an ≦ lim supn an, we de-
duce, by antisymmetry of ≦ that:

lim
n

an = lim sup
n

an = lim inf
n

an = sup
n∈N

an.

The proof is similar in the case where (an)n∈N is nonincreasing.
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Lesson 9: Cardinality.

Let p, n ∈ N, we denote by {p, . . . , n} the set defined by

{p, . . . , n} := {k ∈ N, p ≤ k ≤ n}.

Proposition 15. If f : E → {1, . . . , n} and g : E → {1, . . . , p} are two bijections, then
n = p.

Proof.

(i) suppose p ≥ n. f is a bijection, then f−1 is a bijection, therefore h1 = g◦f−1 : {1, . . . , n} →
{1, . . . , p} is a bijection. Hence h1 is a surjection, therefore ∀j ∈ {1, . . . , p}, ∃i ∈ {1, . . . , n}
such that h1(i) = j which implies n ≥ p. ⇒ n = p.

(ii) suppose n ≥ p. g is a bijection, then g−1 is a bijection, therefore h2 = g◦f−1 : {1, . . . , n} →
{1, . . . , p} is a bijection. Hence h2 is a surjection, therefore ∀j ∈ {1, . . . , p}, ∃i ∈ {1, . . . , n}
such that h2(i) = j which implies p ≥ n. ⇒ n = p.

Definition 56. A set E is finite if E = ∅ or if there exists n ∈ N \ {0} and a bijection
f : E → {1, . . . , n}. By previous Proposition, n is well defined, it is called the cardinality of
E. Notation : |E|. We put |∅| = 0.

Proposition 16. Let E and F be two finite sets.

|E| = |F | ⇐⇒ There exists f : E → F bijective.

Proof. • ”⇒”. Let |E| = |F | = n. f1 : E → {1, . . . , n}, f2 : F → {1, . . . , n} bijective implies
f−1

2 ◦ f1 : E → F bijective as composition of two bijections.

• ”⇐”. E and F finite implies the existence of two bijections f1 : E → {1, . . . , |E|} and
f2 : F → {1, . . . , |F |}. Let f : E → F bijective. We have f2 ◦ f : E → {1, . . . , |F |} et
f1 : E → {1, . . . , |E|} two bijective functions. By Proposition 15, we have |E| = |F |.

Definition 57. A set which is not finite is said to be infinite.

Definition 58. We say that two sets A and B have the same cardinality (or same power) if
there is a bijection between A and B.

Theorem 25 (Cantor-Schröder-Bernstein). Let A and B be two sets. Exactly one of these
cases holds:

(i) There exists an injection from A to B, but no injection from B to A. (In this case, there
is a surjection from B to A but no surjection from A to B).

(ii) There exists an injection from B to A, but no injection from A to B. (In this case, there
is a surjection from A to B but no surjection from B to A).
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(iii) There is a bijection from A to B. This case is consequently the only case where we can
find

(a) an injection from A to B and an injection from B to A

(b) a surjection from A to B and a surjection from B to A

In order to prove there exists a bijection from A to B, it suffices to find :

(i) either an injection from A to B and an injection from B to A

(ii) or a surjection from B to A and a surjection from A to B

Theorem 26 (Cantor). Let E be a set, there is no injection from 2E to E. (equivalently,
there is neither surjection nor bijection from E to 2E).

Proof. Suppose there exists a surjection f : E → 2E. We define a set A := {x ∈ E, x 6∈ f(x)}.
Since f is surjective ∃y ∈ E such that f(y) = A = {x ∈ E, x 6∈ f(x)}. Either y ∈ A and we
have y 6∈ f(y) = A (absurd); or y ∈ E \ A and we have y ∈ f(y) = A (absurd). Hence there
is no surjection from E to 2E .

A set with the same cardinality than N is said to be countably finite. Sets being finite
or countably infinite are countable. Others are uncountable.

Proposition 17.(i) Subsets of countable sets are countable

(ii) If a set countains an uncountable subset, it is uncountable

(iii) A set E is countable if and only if there exists an injection from E to N

Theorem 27. If E is infinite, then it countains at least a countable set.

Proof. Apply Cantor-Shröder-Bernstein Theorem and the last point of the previous Propo-
sition.

Theorem 28. A set E is finite if and only if ∀A ( E, there is no bijection between A and
E.

Theorem 29. Let n ∈ N, the union of a n countable sets is countable. Particularly,
Z = N ∪ −N is countable.

Theorem 30. Let n ∈ N, the cartesian product of n countable sets is countable.

Theorem 31. Q is countable

Theorem 32. NN, [0, 1] and R are uncountable.
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